Singular support of the global attractor for a damped BBM equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Asymptotic Smoothing and the Global Attractor of a Weakly Damped Kdv Equation on the Real Line

The existence of the global attractor of a weakly damped, forced Korteweg-de Vries equation in the phase space L(R) is proved. An optimal asymptotic smoothing effect of the equation is also shown, namely, that for forces in L(R), the global attractor in the phase space L(R) is actually a compact set in H(R). The energy equation method is used in conjunction with a suitable splitting of the solu...

متن کامل

On the Global Attractor for the Damped Benjamin-bona-mahony Equation

We present a new necessary and sufficient condition to verify the asymptotic compactness of an evolution equation defined in an unbounded domain, which involves the Littlewood-Paley projection operators. We then use this condition to prove the existence of an attractor for the damped BenjaminBona-Mahony equation in the phase space H1(R) by showing the solutions are point dissipative and asympto...

متن کامل

Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in L(T)

We prove that the weakly damped cubic Schrödinger flow in L(T) provides a dynamical system that possesses a global attractor. The proof relies on a sharp study of the behavior of the associated flow-map with respect to the weak L(T)-convergence inspired by [18]. Combining the compactness in L(T) of the attractor with the approach developed in [10], we show that the attractor is actually a compa...

متن کامل

Regularity of the global attractor for semilinear damped wave equations

utt + 2ηA 1 2 ut + aut + Au = f(u) in H1 0 (Ω)×L2(Ω), where Ω is a bounded smooth domain in R3. For dissipative nonlinearity f ∈ C2(R,R) satisfying |f ′′(s)| ≤ c(1 + |s|) with some c > 0, we prove that the family of attractors {Aη , η ≥ 0} is upper semicontinuous at η = 0 in H1+s(Ω)×Hs(Ω) for any s ∈ (0, 1). For dissipative f ∈ C3(R,R) satisfying lim|s|→∞ f ′′(s) s = 0 we prove that the attract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Continuous Dynamical Systems - B

سال: 2021

ISSN: 1553-524X

DOI: 10.3934/dcdsb.2020345